Complexity of XOR/XNOR Boolean Functions: A Model using Binary Decision Diagrams and Back Propagation Neural Networks
نویسندگان
چکیده
This paper proposes a model that predicts the complexity of Boolean functions with only XOR/XNOR min-terms using back propagation neural networks (BPNNs) applied to Binary Decision Diagrams (BDDs). The BPNN model (BPNNM) is developed through the training process of experimental data already obtained for XOR/XNOR-based Boolean functions. The outcome of this model is a unique matrix for the complexity estimation over a set of BDDs derived from Boolean expressions with a given number of variables and XOR/XNOR min-terms. The comparison results of the experimental and BPNNM underline the efficiency of this approach, which is capable of providing some useful clues about the complexity of the circuit to be implemented. It also proves the computational capabilities of NNs in providing reliable classification of the complexity of Boolean functions.
منابع مشابه
Probabilistic manipulation of Boolean functions using free Boolean diagrams
We propose a data structure for Boolean functions termed the Free Boolean Diagram. A Free Boolean Diagram allows decision vertices as in the conventional Binary Decision Diagram, but also allows function vertices corresponding to the and and xor functions. It has been shown previously that the equivalence of two Free Boolean Diagrams can be decided probabilistically in polynomial time. Based on...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملBinarized Neural Networks
In this work we introduce a binarized deep neural network (BDNN) model. BDNNs are trained using a novel binarized back propagation algorithm (BBP), which uses binary weights and binary neurons during the forward and backward propagation, while retaining precision of the stored weights in which gradients are accumulated. At test phase, BDNNs are fully binarized and can be implemented in hardware...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS
In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...
متن کامل